УДК. 621 315.5

ЭЛЕКТРОЭНЕРГИЯ ИЗ ТЕПЛОАККУМУЛЯТОРА

Будяк Д.В

г. Москва, ecovillage@yandex.ru

1. Введение

Автономная система энергоснабжения на ВИЭ, как правило, включает гальванические аккумуляторы большой ёмкости, а зачастую — ещё и резервный источник на базе ДВС. Эти обстоятельства позволяют усомниться в экологичности такой системы.

Мы рассмотрим систему, где электрические аккумуляторы заменены тепловыми, а резервным источником энергии является двигатель с внешним подводом тепла. Эту систему можно называть "система производства и хранения тепловой и электрической энергии на базе теплоаккумулятора и двигателя с внешним подводом тепла", но мы далее будем для краткости говорить просто "система".

Примем следующие сокращения:

ТА – тепловой аккумулятор

ТАМ – теплоаккумулирующий материал

ТД – тепловой двигатель с внешним подводом тепла, соединённый с генератором и производящий электроэнергию из тепла.

Примем обозначения:

Тн – более высокая температура в тепловой машине или тепловом насосе

Тх – более низкая температура в тепловой машине или тепловом насосе

2. Устройство системы и порядок работы

TA хранит тепловую энергию, которая может быть получена из различных источников, а именно:

- при сжигании топлива
- от солнечных коллекторов
- из электроэнергии с помощью ТЭНов или тепловых насосов

Когда потребителю нужна электроэнергия, она вырабатывается из накопленной тепловой энергии с помощью ТД.

В системе можно применить разные ТА и ТД. Мы рассмотрим два варианта. По первому варианту в качестве ТАМ используется вода, а ТД — спиральный холодильный компрессор, переделанный в паровую машину. Эта система хорошо изучена на практике, что позволяет оценить её технические и экономические характеристики. Она может быть собрана из серийно выпускаемых компонентов с небольшими доработками. По второму варианту в качестве ТАМ используется гравий. Такая система изучена недостаточно.

3. История вопроса

Известны [1] энергетические установки с высокотемпературными ТА на основе графита, в которых ТА нагреваются электричеством. Плотность хранения электроэнергии достигает 300 Вт*ч на кг.

На солнечных тепловых электростанциях используются высокотемпературные ТА [2]. Днём они заряжаются теплом от солнечных концентраторов, а ночью накопленное тепло используется для выработки электроэнергии.

Английская фирма Isentropic [3] при правительственной поддержке разрабатывает систему аккумулирования электроэнергии с помощью тепловых насосов

с перепадом температур от -160° C до $+500^{\circ}$ C. Заявлен КПД аккумулирования электроэнергии в 70-75% при стоимости хранения ниже, чем на ГАЭС. Экспериментом это заявление пока не подтверждено.

4. КПД системы с учётом несовершенства тепловых машин

4.1. Степень совершенства тепловой машины

Введём величину ϵ — "степень совершенства" тепловой машины или системы. ϵ характеризует эффективность преобразования энергии между тепловой и электрической с учётом потерь на всех этапах. Для системы, работающей в режиме теплового насоса, положим

$$\varepsilon_{\text{тн}}$$
= (КОП теплового насоса)/(КОП обратного цикла Карно) = = (Q₂ / E₁) × (Тн – Тх) / Тн,

где E_1 [Дж] — общие затраты электроэнергии, Q_2 [Дж] — теплота, выделенная тепловым насосом при температуре Th и запасённая в TA. Для теплового двигателя положим

$$\varepsilon_{\text{тл}} = \text{КПД/(КПД Цикла Карно)} = (E_4 / Q_3) \times \text{Тн / (Th - Tx)},$$

где Q_3 – тепловая энергия, извлечённая из TA, E_4 – выработанная электроэнергия.

В хороших энергетических установках с ТД и в тепловых насосах обычно $\epsilon <=0,5$, причём эта величина уменьшается при уменьшении электрической мощности установки. Далее в пункте 4 будем предполагать, что в нашей системе $\epsilon_{\text{тн}} = \epsilon_{\text{тд}} = 0,25$.

4.2. Заряд ТА с помощью теплового насоса и разряд с выработкой электроэнергии

Сначала у нас имеется электричество, мы включаем тепловой насос и с его помощью заряжаем ТА. Израсходовав E_1 электроэнергии, получим в ТА

$$Q_2 = E_1 \times T_H/(T_H-T_X) \times \epsilon_{_{TH}}$$

тепловой энергии при температуре Тн. Если тепло хранится без потерь, то учитывая, что мы предположили $\varepsilon_{\text{тн}} = \varepsilon_{\text{тд}} = 0,25$, при последующем разряде ТА через ТД получим

$$E_4 = Q_2 \times (T_H - T_X) / T_H \times \epsilon_{\scriptscriptstyle TJI} = E_1 \times \epsilon_{\scriptscriptstyle TH} \times \epsilon_{\scriptscriptstyle TJI} \approx 0.06 \; E_1$$

электроэнергии. То есть КПД аккумулирования электроэнергии составит только 6%.

Вспоминаем, что фирма Isentropic обещает КПД аккумулирования 75%. Для этого нужно, чтобы $\varepsilon_{\text{тн}} = \varepsilon_{\text{тд}} = 87\%$ — это очень высокая эффективность, возможность достижения которой вызывает определённые сомнения.

4.3. Заряд ТА с помощью ТЭНов и разряд с выработкой электроэнергии

Определим эффективный КПД ТД $\eta_{\text{тд,эл}}$ как отношение работы электрического тока к затраченному теплу. Отметим, что

$$\eta_{\text{тд,эл}} = \epsilon_{\text{тд}} * (КПД цикла Карно).$$

Пусть снова у нас есть E_1 джоулей электроэнергии. Тогда мы можем нагреть ТА с помощью ТЭНов. Тогда Q_1 = E_1 . Когда нам понадобится электричество, мы разрядим ТА через ТД и получим

$$E_4 = E_1 \times \eta_{\text{тл.эл}}$$

электроэнергии. То есть КПД аккумулирования здесь равен КПД ТД. Например, с помощью большой паротурбинной электростанции мы могли бы таким способом запасти электроэнергию с КПД 42%. Если у нас есть генератор мощностью 1 кВт на двигателе Стирлинга с $\eta_{\text{тд,эл}} = 15\%$, то мы можем запасти электроэнергию с КПД 15%.

4.4. Заряд ТА теплом с последующей выработкой электричества

Из внешнего источника получаем Q_1 Дж тепла при температуре Тн, которое без потерь запасается и хранится в ТА. В фазе разряда тепло извлекается из ТА и приводит в действие тепловой двигатель. В этом случае КПД преобразования тепла в

электричество будет равен $\eta_{\text{тд,эл}}$. По сути, мы просто отложили производство электроэнергии из тепловой энергии на другое время. Этот случай имеет место на тепловых солнечных электростанциях [2], где TA днём заряжаются теплом от концентраторов, а ночью это тепло идёт на выработку электроэнергии. В экодоме можно заряжать TA от солнечных коллекторов или протопить дровяной котёл.

4.5. Выводы

Мы ввели понятие степени совершенства ϵ и, предполагая ϵ \approx 0,25, пришли к выводу о том, что при этом значении ϵ аккумулирование электроэнергии с помощью заряда ТА тепловым насосом малоэффективно. Целесообразность заряда ТА прямым нагревом электроэнергией зависит от КПД ТМ. Если у нас есть источник тепловой энергии, то её аккумулирование с последующей выработкой электроэнергии может иметь смысл

5. Система с водяным ТА

Рассмотрим подробнее систему с водяным ТА и попытаемся определить её свойства.

5.1. Упрощённая схема и режимы работы

Упрощённая схема системы изображена на рис. 1. ТА представляет собой теплоизолированный бак с водой и теплообменником. Водяной контур, изолированный от воды внутри ТА, служит для передачи тепла между котлом, ТА и испарителем паросиловой установки на органическом рабочем теле.

В режиме заряда TA в водогрейном котле сжигается топливо, например, дрова. Вода циркулирует между котлом и TA и заряжает TA.

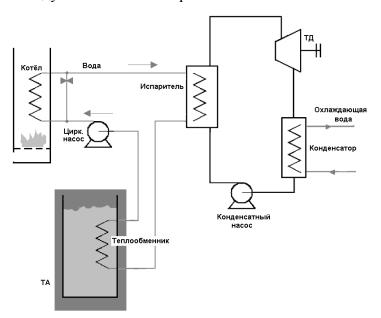


Рис. 1. Система с водой в качестве ТАМ. Упрощённая схема.

В режиме разряда ТА котёл может быть холодным. Вода циркулирует по водяному контуру, минуя котёл благодаря открытому вентилю. Тепло передаётся из ТА в паросиловую установку. В испарителе вода отдаёт тепло органическому рабочему телу. Рабочее тело кипит, и его пары поступают в расширительную машину, изготовленную на базе серийного спирального холодильного компрессора. Далее пары конденсируются в конденсаторе, отдавая тепло охлаждающей воде. Тепло охлаждающей воды сбрасывается в окружающую среду. Конденсат рабочего тела с помощью конденсатного насоса возвращается в испаритель.

Таблица 1. Характеристики экспериментальных паросиловых установок органическим рабочим телом

Параметр\ Установка [4], [5] тест 030507Р Температура рабочего тела на ≈70 (точно не указана) 104 входе в машину, °С Температура охлаждающей 11 \approx 25 (точно не указана) воды, °С Мощность паровой машины, ле 8,0 2 мех. 1,7 эл (предполагая КПД генератора 0,87) кВт КПД Карно 0,25 <=0,14 (точно не указана) 0,25 (предполагая КПД генератора 0,87) 0.16 пе з

Вместо котла источником тепла могут быть солнечные коллекторы или ТЭНы. Также возможна выработка тепла из электричества с КПД выше 100%, если паросиловая установка будет работать в режиме теплового насоса, забирая тепло из окружающей среды.

5.2. Оценка КПД паросиловой установки

Степень совершенства $\varepsilon_{\scriptscriptstyle 3л}$ для системы определим как относительный КПД системы в режиме ТД, рассчитанный по электрической выходной мощности за вычетом энергии, затраченной на привод конденсатного насоса. Мощностью циркуляционных насосов пренебрегаем, поскольку бывают системы отопления без циркуляционных насосов.

Таблица 1 составлена на основе литературных данных по характеристикам экспериментальных паросиловых установок с органическим рабочим телом, созданных на базе серийных холодильных спиральных компрессоров.

Опираясь на эти данные, мы в дальнейших рассуждениях положим $\varepsilon_{\text{эл}} = 0.25$.

5.3. Температура и её перепады в различных точках системы

В литературном источнике [5] не приведено полных данных по температурам в системе, а также по способу определения $\varepsilon_{\text{тд}}$. Логично предположить, что $\varepsilon_{\text{тд}}$ определялся по температурам греющей и охлаждающей воды на входе в испаритель и конденсатор соответственно. Поступим аналогичным образом. Также для простоты примем перепад температур между нагревающей средой на входе и нагреваемой средой на выходе в 5°C во всех теплообменниках. Такого перепада всегда можно добиться подбором достаточно мощных теплообменников.

Предельную температуру воды в котле примем равной 95°C.

Сброс тепла в окружающую среду, вообще говоря, представляет сложности. Будем считать, что нам повезло и имеется неограниченное количество чистой воды температурой $+7^{\circ}$ C, которую мы можем пропустить через конденсатор. При перепаде температур в конденсаторе 5° C температура конденсации будет $+12^{\circ}$ C.

Расчёты показывают, что саморазряд хорошо теплоизолированного водяного ТА объёмом 1 м³ составляет порядка 1% в день. Поэтому саморазрядом пренебрежём.

5.4. Температурные режимы системы, полезная ёмкость и КПД

Предполагаем ёмкость ТА эквивалентной 1 тонне воды, теплоёмкость 4,2 МДж/°С $\approx 1,2$ кВт*ч/°С. Вода выходит из котла при 95°С и внутри ТА проходит через теплообменник. Поэтому температуру полностью заряженного ТА примем равной 90°С. Температуру полностью разряженного ТА примем равной 64°С.

При расчёте КПД будем считать, что температура воды в ТА является средней между температурой полного заряда и полного разряда, т.е. 77°С.

5.5. Заряд

Температура воды в ТА поднимается от 64°C до 90°C, запасаем 30 кВт*ч тепла.

5.6. Разряд

Падение на теплообменнике в ТА – 5°С. Значит, средняя температура греющей воды рабочего тела будет 72°С. КПД Карно при перепаде от 72°С до 12°С составляет 17%. Мы приняли относительный КПД $\epsilon_{\rm эл}=0,25$, поэтому КПД преобразования тепла в электроэнергию

$$\eta_{\text{тд,эл}} = (\text{КПД Карно}) \times \epsilon_{\text{эл}} \approx 4,3\%$$
.

Полная выработка электроэнергии составит $4.3\% \times 30 \approx 1.3$ кВт*ч.

Итак, мы затратили 30 кВт*ч тепла и получили 1,3 кВт*ч электроэнергии. Если мы топили котёл дровами, то, принимая КПД котла равным 80%, а теплотворную способность дров -10 МДж/кг, получаем удельный расход дров ≈ 11 кг/(кВт*ч).

5.7. Заряд ТА электричеством

Пусть у нас имеется ветрогенератор или солнечные панели. Тогда мы можем установить ТЭНы внутри ТА и использовать излишнее вырабатываемое электричество для нагрева воды в ТА. Правда, на выходе мы получим только 4,3% от затраченной электроэнергии.

5.8. Возможность реализации

Примеры реализации рассматриваемой системы описаны в [4], [5]. Лабораторная система может быть собрана по описаниям, данным в литературе, из серийных компонентов с небольшими доработками. Разработка подобной промышленной установки не должна вызвать существенных трудностей.

5.9. Безопасность

При перегреве рабочего тела паросиловой установки давление будет расти, и это может привести к взрыву. Все пригодные по диапазону температур органические рабочие тела при перегреве либо разлагаются с выделением токсичных веществ, либо взрывоопасны. Схема, использующая воду в качестве промежуточного теплоносителя, позволяющая воде кипеть при атмосферном давлении, исключает возможность перегрева рабочего тела паровой машины выше 100°С. А следовательно исключает связанные с этим риски.

5.10. Надёжность и долговечность

Система собирается из компонентов холодильного и отопительного оборудования, которые при должном качестве изготовления и монтажа весьма надёжны, нетребовательны к обслуживанию и имеют большой ресурс.

5.11. Стоимость

Не претендуя на точность, попробуем оценить стоимость основных компонентов системы из [5]. Паросиловая установка, описанная в [5], максимальную механическую мощность 2 кВт. Предполагая КПД генератора 0,87, электрическую 1,7 получим мощность кВт. Стоимость использованных теплообменников CIAT EXL-1440 выяснить не удалось, поэтому подберём близкий по общей площади пластин и габаритному объёму теплообменник Alfa Laval AC-70X-120M. Он пригоден для хладагента R134a, применённого в [5], и воды, выдерживает нужное давление 22 атм. Цена – 2200 евро или 154.000 руб по курсу 70 [6]. Также ЗАО "Ридан" [7] по запросу рассчитало теплообменник по условиям конденсации из [5] и предложила сопоставимую цену в 182.000 руб с доставкой по России. Эту цену мы и примем за основу.

Таких теплообменников нужно как минимум четыре. Три входят в состав паросиловой установки, описанной в [5], а четвёртый теплообменник с близкими параметрами должен находиться в ТА. Таким образом, стоимость теплообменников составит 728.000 руб или 430.000 руб/кВт электрической мощности.

Котёл STROPUVA мощностью 40 кВт стоит 107.000 руб [8], или около 60.000 руб/кВт электрической мощности. Такая мощность котла позволяет паросиловой установке работать непрерывно на полную мощность.

Компрессор Sanden TRS 105 на интернет-аукционе ebay продаётся по цене порядка 15.000-20.000 рублей, это пренебрежимо мало по сравнению со стоимостью теплообменников. Вероятно, что всё остальное оборудование системы, кроме ТА, также будет стоить пренебрежимо мало по сравнению с теплообменниками. Тогда будем считать, что стоимость компонентов системы составляет 500.000 руб/кВт электрической мощности.

По нашим оценкам, стоимость стального бака ТА, средств защиты от коррозии и теплоизоляционных материалов составит около 14.000 руб при вместимости 1000 кг, или около 11.000 руб за кВт*ч электрической ёмкости. Защиту от коррозии необходимо возобновлять через 3-4 года, расходы составят порядка 3.000 рублей. Для сравнения, автомобильный аккумулятор 12В×190А*ч при глубине разряда 30% даёт стоимость ёмкости хранения 11.000 руб/кВт*ч без учёта амортизации [9]. Видим, что без учёта КПД стоимость хранения тепловой энергии сравнима со свинцовыми аккумуляторами. Мы не проводили анализ амортизации аккумуляторов, но можно предположить, что при учёте амортизации хранение тепловой энергии в водяном ТА окажется существенно выгоднее, чем хранение электрической в свинцовом аккумуляторе.

Итак, ориентировочно стоимость хранения электроэнергии составляет 11.000 руб/кВт*ч, стоимость установленной мощности по выработке электроэнергии – 500.000 руб/кВт, КПД аккумулирования электроэнергии – 4,3%, расход дров на производство электроэнергии – 11 кг/кВт*ч. Напомним, речь идёт о неоптимизированной лабораторной установке.

5.12. Согласование с нагрузкой

КПД паросиловой установки при нагрузке ≤0,01 от номинала падает практически до нуля. Также возможны проблемы при мгновенном росте нагрузки. Напротив, гальванический аккумулятор, который обычно применяется в автономных системах, мгновенно отвечает на изменение нагрузки и имеет высокий КПД в широком диапазоне мощностей, начиная от нуля.

Поэтому система в любом случае должна включать буферный гальванический аккумулятор или батарею ионисторов для покрытия нагрузки в трёх ситуациях:

- при особо низких нагрузках, когда КПД паросиловой установки слишком мал; в этом случае паросиловая установка будет остановлена;
- при высоких нагрузках и остановленной паросиловой установке в течение времени, необходимого для запуска паросиловой установки; это время ориентировочно составляет от нескольких десятков секунд до нескольких минут;
- при резком возрастании нагрузки, когда система регулирования паросиловой установки неспособна с этим справиться в течение времени порядка одной секунды.

Требуемая ёмкость аккумулятора будет многократно меньше ёмкости, обычно используемой в автономных системах энергоснабжения.

5.13. Экологичность

При использовании углеводородного рабочего тела, вся система будет изготовлена из материалов либо относительно безвредных, либо допускающих экономически выгодную повторную переработку. Исключение составляют отдельные компоненты электрооборудования, но это неизбежно в любой автономной системе электроснабжения. Важным преимуществом является возможность избежать использования ископаемого топлива.

5.14. Возможные области применения

5.14.1. Автономный экодом

Если дом подключён к электрической или газовой сети, то нет смысла производить или запасать электроэнергию с таким низким КПД. Для автономного экодома рассматриваемая система может иметь смысл, поскольку в большинстве регионов России солнечные батареи и ветряки не могут дать достаточно дешёвую энергию в течение всего года.

5.14.2. Аварийное/временное электроснабжение

Для аварийного электроснабжения КПД имеет меньшее значение, а надёжность и низкие эксплуатационные расходы — большее. Герметичная паровая машина с органическим рабочим телом по своей конструкции, безусловно, надёжнее ДВС.

5.14.3. Автономный посёлок

Чем больше мощность паросиловой установки, тем выше её КПД и ниже удельная стоимость установки и эксплуатации. Поскольку рассмотренная система не предусматривает генерации тепла, можно построить комбинированную солнечнотопливную электростанцию для посёлка и провести ЛЭП к каждому дому.

6. Система с гравийным ТА

Мы подробно рассмотрели систему с использованием воды в качестве ТАМ. Также возможно использование гравийных ТА. Прототип такого ТА – банная печькаменка. Сравнение примеров систем с водяным и гравийным ТА проведено в табл. 2.

Табл. 2. Сравнение систем с водяным и гравийным ТА

Параметр	ТАМ – вода	ТАМ – гравий
Диапазон температур °С	64-90	350-450
Вспомогательный	Вода	Воздух
теплоноситель		
Тепловая ёмкость ТА,	27	37
кВт*ч/м ³		
Электрический КПД ТД по	4,3	≈9,0 (на основании опыта
отношению к теплу из ТА,%		эксплуатации паровых
		машин)
Электрическая ёмкость ТА,	1,16	3,3
кВт*ч/м ³		
Отходящее тепло	Выбрасывается	Может использоваться для
		отопления или ГВС
Коэффициент использования	4,3	до 100
тепловой энергии,%		
КПД цикла заряд – разряд при	4,3	9,0 (+ 81% выделяется в виде
заряде электричеством, %		тепла)
Заряд ТА солнечным	Плоские или вакуумные	Концентраторы
коллектором	коллекторы	
Тепловая машина	Паросиловая установка с	Паросиловая установка или
	органическим рабочим телом	двигатель Стирлинга
Наличие готовых компонентов	Да	Ограничено или отсутствует
и опыта эксплуатации		
Простота эксплуатации	Да	Требуется изучение

Выбор тепловой машины для гравийного ТА проблематичен. Традиционная паровая машина доступна на рынке, но сложна в эксплуатации. Например, Индийская фирма [10] предлагает электростанцию мощностью 3кВА за \$5200 (320.000 руб по курсу 61, или 107.000руб/кВА). Попытки вывести на массовый рынок домашний электрический генератор на двигателе Стирлинга предпринимались многократно, но

большинство из них закончились провалом. Сегодня на европейском рынке имеется как минимум один домашний газовый котёл с двигателем Стирлинга, не требующим обслуживания. Установка способна отдавать электроэнергию во внешнюю сеть. Электрический КПД двигателя заявлен в 15% при мощности в 1 кВт, а стоимость всей установки — около 15.000 евро с НДС (более 1.000.000 руб по курсу 70) [11]. Возможность применения этого двигателя совместно с гравийным ТА требует изучения.

7. Выводы

Мы обсуждали автономную систему электроснабжения с тепловым аккумулированием. Такая система полностью основана на ВИЭ, способна в любое время выдавать полную мощность, при этом ёмкость гальванических аккумуляторов может быть многократно (вплоть до нуля) уменьшена по сравнению с обычными автономными системами.

Были рассмотрены два варианта системы. Система с водяным ТА хорошо изучена, основана на проверенных технологиях. Доступно описание лабораторных прототипов. Можно ожидать, что в случае разработки промышленной версии такой системы она будет надёжной и простой в обслуживании. Однако на данном этапе лабораторные образцы демонстрируют низкий КПД и высокую стоимость.

Система с гравийным ТА позволяет в несколько раз повысить плотность хранения энергии, увеличить КПД аккумулирования электроэнергии как минимум до 9%, а КПД выработки электроэнергии из биомассы — до 7%. 81% запасённого тепла может быть использован на отопление и ГВС. Однако практическое создание такой системы требует исследований.

Литература

- 1. В.Д.Левенберг. Энергетические установки без топлива. Л.: Судостроение, 1987.
- 2. Р.Б.Ахмедов, И.В.Баум, В.А.Пожарнов, В.М.Чаховский. Солнечные электрические станции. М.:ВИНИТИ, 1986.
- 3. Isentropic®: [сайт]. URL: http://isentropic.co.uk/ (дата обращения: 01.02.2015)
- 4. Sylvain Quoilin. Experimental Study and Modeling of a Low Temperature Rankine Cycle for Small Scale Cogeneration. Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of ElectroMechanical Engineer (Energetic engineering). Liège.: University of Liège, 2007.
- 5. D.Manolakos, G.Papadakis, S.Kyritsis, K.Bouzianas. Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination // Desalination 203 (2007) pp 366-374.
- 6. Alfa laval. Price list. Refrigeration equipment 2014: [прайс-лист]. URL: http://tsoluciona.com/wp-content/uploads/Tarifas-Refrigeracion.pdf (дата обращения: 01.02.2015).
- 7. Ридан®: [сайт]. URL: http://wp.ridan.ru (дата обращения: 01.02.2015).
- 8. Твердотопливный котёл STROPUVA S40: [предложение в интернет-магазине] / интернет-магазин GAZANET. URL: http://www.gazanet.ru/shop/UID_89.html (дата обращения: 01.02.2015).
- 9. Аккумулятор грузовой ПАЗ 6СТ-190: [предложение в интернет-магазине] / интернет-магазин AutoAKB.ru. URL:http://www.autoakb.ru/catalogitem/3722/ (дата обращения: 01.02.2015).
- 10. Steam power plants [объявление о продаже] / Aadhunik Global Energy. Rajkot, India. URL:http://www.tinytechindia.com/steampowerplan.htm (дата обращения: 01.02.2015)
- 11. Vitotwin 300-W [объявление о продаже]. URL:http://www.wrobel-shk.de/Vitotwin-300-W-1-kWel-/-26-kWth_1 (дата обращения: 01.02.2015).