Сайт малая энергетика Розин М.Н. Будяк Д.В.


Украина

Минск - это не договор

Мифы украинской энерореформы

Крах сельского хозяйства

87 предложений по утеплению квартиры

Главная

Пара слов об авторе

Что такое киловатт-час?

Потребление энергии в частном доме

Правда жизни: без топлива - никак

Возможен ли вечный двигатель?

Как искать патенты

Энергия ветра

Самодельный генератор на постоянных магнитах

Самодельный ветряк с лопастями из шпона

Статья о древесных гранулах и сравнении их с другими видами топлива

Самодельная ветроустановка с вертикальной осью вращения

Самодельный трех лопастный ветряк с автомобильным генератором переделанным на постоянные магниты

Самодельный автоматический котел на древесных гранулах

Самодельный ветряк с лопастями из алюминиевой трубы с самодельным генератором

Самодельный тихоходный ветряк

Схема электрическая тихоходного ветряка

Самодельный ветряк с самодельным генератором

Ветряк в сельском доме - опыт и раздумья

Книги, архивы метеоданных

Наш ветряк с задней ступицей от ВАЗ-2109, доклад, авг 2012, pdf

Наш ветряк - доклад, фотографии и смета (zip)

Возобновляемая энергетика на Родосе

Теория идеального ветряка или в чем ошибка Владимира Сидорова

Знак вопроса

Перевод инструкции к программе Profili

Быть или не быть?

Ветрогирлянды

Что такое число Рейнольдса?

Теория паруса

Теория идеального ветряка

Расчет лопастей ветряка

Старинный ветряк, сохранившийся в курском областном музее.

Вопросы по расчету лопастей

Расчет минимального ветра, необходимого для страгивания ветряка

Концентраторы ветрового потока

Ветровая энергия для дома

Оптимальный угол атаки в ветряке

Винт-турбина

Поляры плоской пластины и желобков, а также GOE417A

Как изготовить деревянные лопасти для ветряка

Программа для трансформации профилей

Идеальный коэффициент использования энергии ветра.

Г. X . САБИНИН ТЕОРИЯ ИДЕАЛЬНОГО ВЕТРЯКА

Программа для расчета потерь напора

Парашютный ветряк

Энергия воды

Энергия равнинных рек - что ждать?

Самодельная мини гидроэлектростанция Кимкетовых

Принцип работы гидротарана и расчетные формулы.

Статья из довоенной технической энциклопедии про гидротаран.

Самодельная микро ГЭС. Часть 1. Напорная установка

Теория и расчет напорной микро ГЭС

Теория и расчет пропеллерной проточной микро ГЭС

Турбина Пельтона. Физика работы и основные формулы.

Энергия Солнца

Несколько слов об энергии Солнца

Возобновляемая энергетика на Родосе

Электрооборудование

Сложности при изучении магнетизма.

Как измерить характеристики неизвестного магнита?

Расчет магнитного поля в железе генератора.

Расчет бандажа для постоянных магнитов

Электрогенераторы ВИНДЭК для ветряков и микро ГЭС

Электрические характеристики велосипедного генератора

Электрические характеристики генератора Г303В

Определение внутреннего сопротивлениия генератора

Устройство автомобильных генераторов

Книги и ссылки

Авторское право

Карта сайта

__________

 

 

 


>>Ветроэнергетика

Ерохин Владимир Викторович - математик из Тореза
Уникальное открытие. Ерохин В.В. из Тореза нашёл продольную силу в магнетизме Подробнее

Теория идеального ветряка

Теория Жуковского

    Теория идеального ветряка, как ее сейчас называют, не создавалась Н.Е. Жуковским специально, а представляет собой вводный параграф к последней из трех статей, посвященных ветрякам, написанных в 1920 году. Внимание к теме ветряков у Жуковского было вызвано предложениями одного изобретателя сулившего огромную мощность от своей ветроустановки. Жуковский имел обыкновение в течение ряда лет вновь и вновь возвращаться к ранее поднятым темам и с присущим ему блеском выяснять суть проблемы до конца. Но последовавшие болезни, смерть любимицы умницы дочери не оставили возможности 73 летнему ученому продолжить работы по данной теме.

    Суть теории в следующем.

 

КИЭВ идеального ветряка

    Когда поток воздуха набегает на вращающийся ветряк, то скорость потока уменьшается. В плоскости ветряка она равна Vв - v1, а далеко за ветряком Vв - v2. Работа, производимая ветром, равна разности кинетических энергий набегающего и отходящего воздуха.

     (3.1.1)

    С другой стороны уменьшение импульса воздушного потока Δp = m1v2 = FΔt вызывает силу, воздействующую на лопасти ветряка. Замедленное прохождение воздуха через плоскость ветряка, преодолевающего сопротивление лопастей, вызвано работой, совершаемой ветром.

    (3.1.2)

    Приравнивая 3.1.1 и 3.1.2 и решая, находим

    (3.1.3)

    (3.1.4)

    То есть замедление скорости ветра за ветроколесом в два раза больше замедления скорости в плоскости колеса.

    КИЭВ в данном случае составит величину

(3.1.5)

    Максимальный КИЭВ достигается при v1 = 1/3 Vв и составляет

hmax = 16/27 = 0,593

    Данная теория, несмотря на ее сугубую абстрактность, является базовой в теории пропеллерных ветроустановок. Поэтому рассмотрим ее более внимательно. Во-первых, обратим внимание на формулу КИЭВ 3.1.5. Скорость потока в плоскости ветроколеса на треть меньше, чем скорость ветра, следовательно, треть набегающего потока не может пройти сквозь ветроколесо и огибает его снаружи. Поэтому в числителе подставлена масса m1, т.е. масса воздуха прошедшая через ветроколесо, она на треть меньше полной массы m набегающего воздуха, стоящей в знаменателе. Напомню, что воздух в ветроустановках испытывает столь ничтожные давления, что его можно считать несжимаемым. Повышенное давление перед ветроколесом не может служить резервуаром дополнительных масс сжатого воздуха.

    Воздух, отходящий в дальней зоне за ветроколесом, имеет скорость в одну треть от скорости ветра, следовательно, он уносит девятую часть энергии потока прошедшего сквозь ветроколесо. Произведение двух третей воздуха, прошедшего сквозь колесо на к.п.д. преобразования энергии, равный восьми девятым и составляет найденный КИЭВ 16/27.

    Входящий в формулу 3.1.2 импульс mv2 позволяет нам сделать важный вывод. Потеря скорости воздухом v2, а, следовательно, и отдаваемая ветроколесу энергия складывается из двух составляющих. Потери скорости до ветроколеса v1 и потери скорости после ветроколеса v2- v1. До ветроколеса поток теряет треть своей скорости и 5/9 своей энергии, которую передает колесу. После колеса поток теряет еще треть скорости и 3/9 первоначальной энергии. Оставшаяся 1/9 часть энергии уносится отходящим потоком. Понятно, что набегающий поток воздуха создает некое избыточное давление на передней плоскости лопастей, заставляющее вращаться ветроколесо. Поток, находящийся за ветроколесом, может отдать часть своей энергии ветроколесу, оставшемуся позади, только в том случае, если этот поток воздуха, расширяясь, создает разряжение за ветроколесом. Отрицательное давление на задней стороне лопаток увеличивает силу, вращающую ветроколесо. Можно составить уравнения Бернулли и получить те же результаты, что и у Жуковского, оперируя в выкладках понятием давления...

   Надо заметить, что теория идеально ветряка не учитывает влияния нескольких факторов: влияние потока воздуха не прошедшего сквозь ветряк, подсоса воздуха в разряжение создающееся за ветроколесом, вращения отходящего воздуха. Не учитываются потери на трение, индуктивные потери, косину набегающего потока. Эти факторы уменьшают КИЭВ. Отходящий медленный поток воздуха считается уходящим в бесконечность. Граница раздела между быстрым внешним потоком и медленным внутренним имеет нулевое сопротивление на трение, т.к. воздух считается идеальной жидкостью. В реальности внешний, быстрый поток смешивается с внутренней струей, ускоряет ее и создает разряжение, которое передается на заднюю сторону ветроколеса. Поэтому КИЭВ должен быть несколько больше. Кроме того, теория идеальногоо ветряка трубует совершенно определенных значений осевой и вращающей силы, действующих на лопасти. Только при этом условии будет получен максимум мощности. Лопасти же работают по своим собственным аэродинамическим законам. И несовпадение энергетических требований ветряка и аэродинамических возможностей лопастей уменьшают КИЭВ. На практике достигнутый КИЭВ равен 43%.

     Влияние вращения в отходящей струе нельзя решить количественно в рамках теории идеального ветряка. Эти потери зависят от конкретной реализации ветряка и определяются в ходе практического расчета. Жуковский вывел в той же статье необходимые расчетные формулы реального ветряка. Позже, в результате многочисленных экспериментальных исследований, выяснилось, как пишет проф. Ветчинкин В.П., что характеристика реального ветряка лежит выше найденной Жуковским. Сабинин Г.Х. пытался создать собственную теорию идеального ветряка, но получил по мнению Ветчинкина несколько завышенный результат в 0,687.

      Во всем мире данную теорию называют теорией Бетца. Бетц в 1919 году защитил диссертацию, а в 1926 году выпустил замечательную книгу "Энергия ветра и ее использование посредством ветряных мельниц". По воспоминаниям современников в нашей стране вывод идеального КИЭВ впервые сделал в 1914 году Ветчинкин ВП, бывший в то время студентом Жуковского. Скорее всего это студенческое исследование появилось в результате поручения Жуковского. Жуковский любил таким образом побуждать студентов к научной работе. Обнаружить этой работы в Публичной библиотеке в Санкт-Петербурге мне не удалось. Первая письменная работа, посвященная выводу теории идельного ветряка в нашей стране, принадлежит Жуковскому. Датируется февралем 1920 года. Жуковский свой вывод сделал совершенно самостоятельно. Иначе бы он упомянул о Бетце. Николай Егорович был человеком чрезвычайно щепетильным. Петроградский профессор Ботезат Г.А. в 1917 году создал теорию проско-радиального лопастного винта. В теории рассматривались все винты: вентилятора, ветролета, анемомента, тянущий винт. Теорию ветряных мельниц он обещал рассмотреть в следующем издании выпуска, но этого издания не появилось. Шла револющия... Вывод максимального КИЭВ идеального ветряка мало отличается от выкладок при исследовании идеального тянущего пропеллера, которые появились на десятка два лет раньше. Очень вероятно, что подобные расчетные формулы или оценки были получены другими авторами в работах посвященным пропеллеру самолета на рубеже девятнадцатого и двадцатого веков, просто на них, как не имеющих отношения к авиации, не обратили тогда внимания.

 

Украина

Минск - это не договор, а акт о капитуляции

Какая идеология склеит Украину

Безвиз, Киевская Русь и украинский этнос

Украина не станет аграрной державой. Чипореволюция.

Как выдать пенсии пенсионерам на Донбассе?

Мифы украинской энергореформы

Тревожное будущее с/х Украины

Дефицит бюджета Украины 35 - 74 %

Импотентность украинского государства и общества

Как утеплить жилище? 87 предложений

Аккумулирование

Аккумулирование и локальные энергосети

Электроэнергия из теплоаккумулятора

Газовые аккумуляторы

Энергия смешивания воздуха с водой

Энергия из воздуха: список ссылок и патентов"

Моя модель энергетической башни (видео)

Дождливые башни - не всё так страшно

Дождливая башня превращается в ледянящую

Электричество из тепла

Правда жизни: без топлива - никак

Промышленно выпускавшиеся двигатели Стирлинга

Двигатель стирлинга мощностью 44 вт

Моя программа расчёта Стирлинга

Книга Уолкера по двигателям Стирлинга

Расчёт криокулера с циклом Стирлинга (djvu)

Модельный Стирлинг из пробирки

Ищем активные сообщества по Стирлингам

Как сделать маленькую паровую машину, 1913 год

Как сделать мощную паровую машину, 1913 год

Мощные промышленные паровые машины Spilling, pdf

Термоэлектричество

Теория вихревых турбомашин, tif

Сайт Дубинина В.С.

ДВС

Вода в бензине - из истории вопроса

Взрыв пыли - к вопросу о твёрдотопливном ДВС

Проектируем свой Стирлинг

Заглавная страница проекта Стирлинга

Про уплотнения из графита

Отчёт о состоянии проекта – июнь 2015

Техническая концепия системы

Экономическая концепия проекта

Водород в двигателе Стирлинга

Журнал изменений проекта

Ищем активные сообщества по Стирлингам

Моя программа расчёта Стирлинга

Самодельные топливные элементы

Топливные элементы с прямым окислением угля (DCFC)

Оригинальная статья автора изобретения (1896 год) в Русском переводе

Опыты фирмы SARA

Обзор зарубежных публикаций

Мои опыты по DCFC в 2005 г.

Состояние работ на сентябрь 2010 года

Лабораторная работа N1 (Open Office)

Дневники некоторых опытов

Методичка по изготовлению уголька(Open Office)

Программы для управления экспериментом

Программирование

Программы для опытов по DCFC/УТЭ

Введение в Common Lisp для профессионалов Delphi/SQL

Мой старый .emacs (utf-8)

Примеры метапрограммирования в программе Mathematica

__________


К началу страницы